Answer
$F(65)$ = $282.75$ $ft$
Estimate = $7.6$ $ft/mph$
Actual = $7.65$ $ft/mph$
Work Step by Step
$F(65)$ = $(1.1\times65)+[0.05\times(65^{2})]$ = $282.75$ $ft$
Estimate
$F'(s)$ = $1.1+0.1s$
$F'(65)$ = $1.1+(0.1\times65)$ = $7.6$ $ft/mph$
Actual
$F(66)$ = $(1.1\times66)+[0.05\times(66^{2})]$ = $290.4$ $ft$
$F(66) - F(65)$ = $290.4-282.75$ = $7.65$ $ft/mph$