Answer
$$\infty $$
Work Step by Step
\begin{align*}
\lim _{x \rightarrow -\infty}\frac{3x^3-10}{ x+4}&= \lim _{x \rightarrow -\infty}\frac{x^3}{x}\frac{3-10x^{-3}}{ 1+4x^{-1}}\\
&=\lim _{x \rightarrow -\infty}\frac{x^3}{x}\lim _{x \rightarrow -\infty}\frac{3-10x^{-3}}{ 1+4x^{-1}}\\
&=3\lim _{x \rightarrow -\infty} x^2 \\
&=\infty.\\
\end{align*}