Answer
0
Work Step by Step
Divide the numerator and denominator by $x$, which is the highest power of $x$ occurring in the denominator. Then, we obtain
$\lim\limits_{x \to \infty}\frac{4}{x+5}=\lim\limits_{x \to \infty}\frac{\frac{4}{x}}{1+\frac{5}{x}}$
As $x\rightarrow \infty$, $\frac{4}{x}$ and $\frac{5}{x}$ tends to 0.
That is, $\lim\limits_{x \to \infty}\frac{\frac{4}{x}}{1+\frac{5}{x}}=\frac{0}{1+0}=0$