Answer
$$-\infty $$
Work Step by Step
\begin{align*}
\lim _{x \rightarrow -\infty}\frac{7x^2-9}{4x+3}&= \lim _{x \rightarrow -\infty}\frac{x^2}{x}\frac{7-9x^{-2}}{4+3x^{-1}}\\
&=\lim _{x \rightarrow -\infty}\frac{x^2}{x}\lim _{x \rightarrow -\infty}\frac{7-9x^{-2}}{4+3x^{-1}}\\
&=\frac{7}{4}\lim _{x \rightarrow -\infty} x \\
&=-\infty.\\
\end{align*}