Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.4 Limits and Continuity - Exercises - Page 67: 59

Answer

$$a=2 ,\ \ b= 1$$

Work Step by Step

Given $$ f(x)=\left\{\begin{array}{ll} {x^{-1}} & {\text { for } x\frac{1}{2}} \end{array}\right. $$ Since $f(-1)= b-a$ \begin{align*} \lim_{x\to -1^+}f(x) &= \lim_{x\to -1^+}x^{-1}\\ &=-1\\ \lim_{x\to -1^-}f(x) &= \lim_{x\to -1^-}(ax+b)\\ &=b-a \end{align*} Then $f(x)$ is continuous at $x= -1$ when $$ b-a=-1\tag{1}$$ Since $f(1/2)= \dfrac{1}{2}a+b$ \begin{align*} \lim_{x\to (1/2)^+}f(x) &= \lim_{x\to (1/2)^+}x^{-1}\\ &=2\\ \lim_{x\to (1/2)^-}f(x) &= \lim_{x\to (1/2)^-}(ax+b)\\ &= \dfrac{1}{2}a+b \end{align*} Then $f(x)$ is continuous at $x= 1/2$ when $$ \dfrac{1}{2}a+b=2\tag {2}$$ By solving (1) and (2), we get $$a=2 ,\ \ b= 1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.