Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 910: 61

Answer

Please see the figure attached. (a) the image of ${\cal D}$ under $F$ is the rectangle ${\cal R}$ in the $uv$-plane: ${\cal R} = \left\{ {\left( {u,v} \right)|\frac{1}{2} \le u \le 2,\frac{1}{2} \le v \le 2} \right\}$ (b) we show that $\left| {{\rm{Jac}}\left( G \right)} \right| = \frac{1}{{2\left| v \right|}}$ (c) we prove the formula: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {\frac{y}{x}} \right){\rm{d}}x{\rm{d}}y = \frac{3}{4}\mathop \smallint \limits_{1/2}^2 \frac{{f\left( v \right){\rm{d}}v}}{v}$ (d) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \frac{y}{x}{{\rm{e}}^{y/x}}{\rm{d}}x{\rm{d}}y \simeq 4.31$

Work Step by Step

Please see the figure attached for the region ${\cal D}$ bounded by the curves $y = 2/x$, $y = 1/\left( {2x} \right)$, $y = 2x$, $y = x/2$ in the first quadrant. From these curves, we obtain the description of ${\cal D}$: ${\cal D} = \left\{ {\left( {x,y} \right)|\frac{1}{2} \le xy \le 2,\frac{1}{2} \le \frac{y}{x} \le 2} \right\}$ (a) We have the map $F$: $u = xy$, $v = y/x$ from the $xy$-plane to the $uv$-plane. So, we can write $F\left( {x,y} \right) = \left( {xy,\frac{y}{x}} \right)$ Since $u = xy$, $v = y/x$, so the inequalities in ${\cal D}$ become $\frac{1}{2} \le u \le 2,\frac{1}{2} \le v \le 2$ Let ${\cal R}$ denote the image of ${\cal D}$ under $F$. Thus, the description of ${\cal R}$: ${\cal R} = \left\{ {\left( {u,v} \right)|\frac{1}{2} \le u \le 2,\frac{1}{2} \le v \le 2} \right\}$ So, the image of ${\cal D}$ under $F$ is the rectangle ${\cal R}$ in the $uv$-plane. (b) In part (a), we obtain $F\left( {x,y} \right) = \left( {xy,\frac{y}{x}} \right)$ Evaluate the Jacobian of $F$: ${\rm{Jac}}\left( F \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial x}}}&{\frac{{\partial u}}{{\partial y}}}\\ {\frac{{\partial v}}{{\partial x}}}&{\frac{{\partial v}}{{\partial y}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} y&x\\ { - \frac{y}{{{x^2}}}}&{\frac{1}{x}} \end{array}} \right| = \frac{y}{x} + \frac{y}{x} = 2\frac{y}{x}$ Using Eq. (14) in Section 16.6: ${\rm{Jac}}\left( G \right) = {\rm{Jac}}{\left( F \right)^{ - 1}}$, ${\ \ \ \ }$ where $G = {F^{ - 1}}$ we get ${\rm{Jac}}\left( G \right) = \frac{x}{{2y}}$. Since $v = y/x$, so $\left| {{\rm{Jac}}\left( G \right)} \right| = \frac{1}{{2\left| v \right|}}$. (c) Using $v = y/x$, and the Change of Variables Formula in Section 16.6, we evaluate $f\left( {\frac{y}{x}} \right)$ over ${\cal D}$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {\frac{y}{x}} \right){\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} f\left( v \right)\left| {{\rm{Jac}}\left( G \right)} \right|{\rm{d}}v{\rm{d}}u$ Using $\left| {{\rm{Jac}}\left( G \right)} \right| = \frac{1}{{2\left| v \right|}}$ from part (b), we get $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {\frac{y}{x}} \right){\rm{d}}x{\rm{d}}y = \frac{1}{2}\mathop \smallint \limits_{u = 1/2}^2 \mathop \smallint \limits_{v = 1/2}^2 \frac{{f\left( v \right)}}{{\left| v \right|}}{\rm{d}}v{\rm{d}}u$ $ = \frac{1}{2}\left( {\mathop \smallint \limits_{u = 1/2}^2 {\rm{d}}u} \right)\left( {\mathop \smallint \limits_{v = 1/2}^2 \frac{{f\left( v \right)}}{{\left| v \right|}}{\rm{d}}v} \right)$ $ = \frac{1}{2}\left( {\frac{3}{2}} \right)\left( {\mathop \smallint \limits_{v = 1/2}^2 \frac{{f\left( v \right)}}{{\left| v \right|}}{\rm{d}}v} \right)$ Since $\frac{1}{2} \le v \le 2$ ($v$ is positive), we can drop the absolute value sign, and hence $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {\frac{y}{x}} \right){\rm{d}}x{\rm{d}}y = \frac{3}{4}\mathop \smallint \limits_{1/2}^2 \frac{{f\left( v \right){\rm{d}}v}}{v}$ (d) Write $f\left( {\frac{y}{x}} \right) = \frac{y}{x}{{\rm{e}}^{y/x}}$. Since $v = y/x$, so $f\left( v \right) = v{{\rm{e}}^v}$. Using the result in part (c): $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {\frac{y}{x}} \right){\rm{d}}x{\rm{d}}y = \frac{3}{4}\mathop \smallint \limits_{1/2}^2 \frac{{f\left( v \right){\rm{d}}v}}{v}$ we evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \frac{{y{{\rm{e}}^{y/x}}}}{x}{\rm{d}}x{\rm{d}}y$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \frac{y}{x}{{\rm{e}}^{y/x}}{\rm{d}}x{\rm{d}}y = \frac{3}{4}\mathop \smallint \limits_{1/2}^2 \frac{{v{{\rm{e}}^v}{\rm{d}}v}}{v}$ $ = \frac{3}{4}\left( {{{\rm{e}}^v}|_{1/2}^2} \right) = \frac{3}{4}\left( {{{\rm{e}}^2} - {{\rm{e}}^{1/2}}} \right) \simeq 4.31$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \frac{y}{x}{{\rm{e}}^{y/x}}{\rm{d}}x{\rm{d}}y \simeq 4.31$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.