Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 881: 43

Answer

The volume of the region is $\frac{5}{3}\pi $.

Work Step by Step

We have the region ${\cal W}$ bounded below by the plane $z=1$ and above by the sphere ${x^2} + {y^2} + {z^2} = 4$. Step 1. Find the range of $\rho$ We see from the figure attached, each ray begins at the plane $z=1$ and ends at the sphere. In spherical coordinates: - the plane $z=1$ is given by $\rho \cos \varphi = 1$. So, $\rho = \frac{1}{{\cos \varphi }}$. - the sphere ${x^2} + {y^2} + {z^2} = 4$ has radius $2$, thus $\rho = 2$. Thus, $\rho$ ranges from $\rho = \frac{1}{{\cos \varphi }}$ to $\rho = 2$. Step 2. Find the range of $\varphi $ From the figure attached, we see that $\varphi $ varies from $\varphi = 0$ to the angle where the sphere intersects the plane $z = 1 = \rho \cos \varphi $, where $\rho = 2$. So $\cos \varphi = \frac{1}{2}$, ${\ \ \ \ }$ $\varphi = \frac{\pi }{3}$ Thus, the region description of ${\cal W}$ in spherical coordinates: ${\cal W} = \left\{ {\left( {\rho ,\varphi ,\theta } \right)|\frac{1}{{\cos \varphi }} \le \rho \le 2,0 \le \varphi \le \frac{\pi }{3},0 \le \theta \le 2\pi } \right\}$ Using Eq. (8) of Theorem 3. we evaluate the volume of ${\cal W}$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {\rm{d}}V = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{\pi /3} \mathop \smallint \limits_{\rho = 1/\cos \varphi }^2 {\rho ^2}\sin \varphi {\rm{d}}\rho {\rm{d}}\varphi {\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{\pi /3} \left( {{\rho ^3}|_{1/\cos \varphi }^2} \right)\sin \varphi {\rm{d}}\varphi {\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{\pi /3} \left( {8 - \frac{1}{{{{\cos }^3}\varphi }}} \right)\sin \varphi {\rm{d}}\varphi {\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{\pi /3} \left( {8\sin \varphi - {{\cos }^{ - 3}}\varphi \sin \varphi } \right){\rm{d}}\varphi {\rm{d}}\theta $ $ = \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{\pi /3} \sin \varphi {\rm{d}}\varphi {\rm{d}}\theta - \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{\pi /3} {\cos ^{ - 3}}\varphi \sin \varphi {\rm{d}}\varphi {\rm{d}}\theta $ Consider the inner integral of the second integral on the right-hand side: $ - \frac{1}{3}\mathop \smallint \limits_{\varphi = 0}^{\pi /3} {\cos ^{ - 3}}\varphi \sin \varphi {\rm{d}}\varphi $ Write $u = \cos \varphi $. So, $du = - \sin \varphi d\varphi $. Thus, $ - \frac{1}{3}\mathop \smallint \limits_{\varphi = 0}^{\pi /3} {\cos ^{ - 3}}\varphi \sin \varphi {\rm{d}}\varphi = \frac{1}{3}\mathop \smallint \limits_{u = 1}^{1/2} {u^{ - 3}}{\rm{d}}u$ Therefore, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {\rm{d}}V = \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\varphi = 0}^{\pi /3} \sin \varphi {\rm{d}}\varphi {\rm{d}}\theta + \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{u = 1}^{1/2} {u^{ - 3}}{\rm{d}}u{\rm{d}}\theta $ $ = - \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\cos \varphi |_0^{\pi /3}} \right){\rm{d}}\theta - \frac{1}{6}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {{u^{ - 2}}|_1^{1/2}} \right){\rm{d}}\theta $ $ = - \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\frac{1}{2} - 1} \right){\rm{d}}\theta - \frac{1}{6}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {4 - 1} \right){\rm{d}}\theta $ $ = \frac{4}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta - \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta $ $ = \frac{8}{3}\pi - \pi = \frac{5}{3}\pi $ Thus, the volume of the region is $\frac{5}{3}\pi $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.