Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 881: 33

Answer

$\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^1 \mathop \smallint \limits_{z = 0}^4 f\left( {r\cos \theta ,r\sin \theta ,z} \right)r{\rm{d}}z{\rm{d}}r{\rm{d}}\theta $

Work Step by Step

We have $\mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{y = - \sqrt {1 - {x^2}} }^{\sqrt {1 - {x^2}} } \mathop \smallint \limits_{z = 0}^4 f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$. From the order of the integration, we obtain the region description: ${\cal W} = \left\{ {\left( {x,y,z} \right)| - 1 \le x \le 1, - \sqrt {1 - {x^2}} \le y \le \sqrt {1 - {x^2}} ,0 \le z \le 4} \right\}$ Notice that this is a $z$-simple region such that the projection of ${\cal W}$ onto the $xy$-plane is an unit disk ${x^2} + {y^2} \le 1$. Thus, the description of ${\cal W}$ in cylindrical coordinates: ${\cal W} = \left\{ {\left( {r,\theta ,z} \right)|0 \le r \le 1,0 \le \theta \le 2\pi ,0 \le z \le 4} \right\}$ So, the triple integral in cylindrical coordinates: $\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^1 \mathop \smallint \limits_{z = 0}^4 f\left( {r\cos \theta ,r\sin \theta ,z} \right)r{\rm{d}}z{\rm{d}}r{\rm{d}}\theta $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.