Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.4 Integration in Polar, Cylindrical, and Spherical Coordinates - Exercises - Page 881: 40

Answer

The volume of the region is $\frac{4}{3}{\left( {{a^2} - {b^2}} \right)^{3/2}}\pi $.

Work Step by Step

Using ${r^2} = {x^2} + {y^2}$, we have the equation of a sphere of radius $a$ in cylindrical coordinates: ${r^2} + {z^2} = {a^2}$ And the equation of the central cylinder of radius $b$ in cylindrical coordinates: $r=b$ Let ${\cal W}$ denote the region of the sphere of radius $a$ from which a central cylinder of radius $b$ has been removed, where $0 < b < a$. We project ${\cal W}$ onto the $xy$-plane and obtain the domain ${\cal D}$. From the figure attached, we see that the description of ${\cal D}$ in polar coordinates is ${\cal D} = \left\{ {\left( {r,\theta } \right)|b \le r \le a,0 \le \theta \le 2\pi } \right\}$ From the equation ${r^2} + {z^2} = {a^2}$, we obtain the upper and lower boundaries of ${\cal W}$: $z = \pm \sqrt {{a^2} - {r^2}} $ So, ${\cal W}$ is bounded below by $z = - \sqrt {{a^2} - {r^2}} $ and bounded above by $z = \sqrt {{a^2} - {r^2}} $. Thus, the description of ${\cal W}$ is ${\cal W} = \left\{ {\left( {r,\theta ,z} \right)|b \le r \le a,0 \le \theta \le 2\pi , - \sqrt {{a^2} - {r^2}} \le z \le \sqrt {{a^2} - {r^2}} } \right\}$ Evaluate the volume of ${\cal W}$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {\rm{d}}V = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = b}^a \mathop \smallint \limits_{z = - \sqrt {{a^2} - {r^2}} }^{\sqrt {{a^2} - {r^2}} } r{\rm{d}}z{\rm{d}}r{\rm{d}}\theta $ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = b}^a r\left( {z|_{ - \sqrt {{a^2} - {r^2}} }^{\sqrt {{a^2} - {r^2}} }} \right){\rm{d}}r{\rm{d}}\theta $ $ = 2\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = b}^a r\sqrt {{a^2} - {r^2}} {\rm{d}}r{\rm{d}}\theta $ $ = - \frac{2}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {{{\left( {{a^2} - {r^2}} \right)}^{3/2}}|_b^a} \right){\rm{d}}\theta $ $ = \frac{2}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\left( {{a^2} - {b^2}} \right)^{3/2}}{\rm{d}}\theta $ $ = \frac{2}{3}{\left( {{a^2} - {b^2}} \right)^{3/2}}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta $ $ = \frac{4}{3}{\left( {{a^2} - {b^2}} \right)^{3/2}}\pi $ Thus, the volume of the region is $\frac{4}{3}{\left( {{a^2} - {b^2}} \right)^{3/2}}\pi $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.