Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Preliminary Questions - Page 870: 1

Answer

(a) equal (b) equal (c) not equal

Work Step by Step

We have the triple integral: $\mathop \smallint \limits_0^1 \mathop \smallint \limits_3^4 \mathop \smallint \limits_6^7 f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$. From the order of the integral we obtain the domain: (1) ${\ \ \ \ \ }$ $0 \le x \le 1$, ${\ \ }$ $3 \le y \le 4$, ${\ \ }$ $6 \le z \le 7$ Now, we compare with the following triple integrals: (a) $\mathop \smallint \limits_6^7 \mathop \smallint \limits_0^1 \mathop \smallint \limits_3^4 f\left( {x,y,z} \right){\rm{d}}y{\rm{d}}x{\rm{d}}z$ From the order of the integral we obtain the domain: $6 \le z \le 7$, ${\ \ \ }$ $0 \le x \le 1$, ${\ \ \ }$ $3 \le y \le 4$ Since the domain is the same with (1), the triple integral is equal to $\mathop \smallint \limits_0^1 \mathop \smallint \limits_3^4 \mathop \smallint \limits_6^7 f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$. (b) $\mathop \smallint \limits_3^4 \mathop \smallint \limits_0^1 \mathop \smallint \limits_6^7 f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}x{\rm{d}}y$ From the order of the integral we obtain the domain: $3 \le y \le 4$, ${\ \ \ }$ $0 \le x \le 1$, ${\ \ \ }$ $6 \le z \le 7$ Since the domain is the same with (1), the triple integral is equal to $\mathop \smallint \limits_0^1 \mathop \smallint \limits_3^4 \mathop \smallint \limits_6^7 f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$. (c) $\mathop \smallint \limits_0^1 \mathop \smallint \limits_3^4 \mathop \smallint \limits_6^7 f\left( {x,y,z} \right){\rm{d}}x{\rm{d}}z{\rm{d}}y$ From the order of the integral we obtain the domain: $0 \le y \le 1$, ${\ \ \ }$ $3 \le z \le 4$, ${\ \ \ }$ $6 \le x \le 7$ The domain is not the same with (1), therefore the triple integral is not equal to $\mathop \smallint \limits_0^1 \mathop \smallint \limits_3^4 \mathop \smallint \limits_6^7 f\left( {x,y,z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.