Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 861: 68

Answer

(a) Using the Fundamental Theorem of Calculus, we prove that $G{\rm{''}}\left( t \right) = f\left( t \right)$ (b) By changing the order of integration, we show that $G\left( t \right) = \mathop \smallint \limits_0^t \left( {t - y} \right)f\left( y \right){\rm{d}}y$

Work Step by Step

We have $G\left( t \right) = \mathop \smallint \limits_0^t \mathop \smallint \limits_0^x f\left( y \right){\rm{d}}y{\rm{d}}x$. Since $f\left( y \right)$ is a function of $y$ alone, the inner integral is a function of $x$ alone: $H\left( x \right) = \mathop \smallint \limits_0^x f\left( y \right){\rm{d}}y$ So, $G\left( t \right) = \mathop \smallint \limits_0^t H\left( x \right){\rm{d}}x$. Using the Fundamental Theorem of Calculus, Part II (Section 5.5) we obtain $G'\left( t \right) = H\left( t \right)$ Thus, $G'\left( t \right) = \mathop \smallint \limits_0^t f\left( y \right){\rm{d}}y$ Again using the Fundamental Theorem of Calculus, Part II (Section 5.5) we obtain $G{\rm{''}}\left( t \right) = f\left( t \right)$. Notice that $G\left( t \right)$ is called the "second antiderivative" of $f\left( y \right)$. (b) Recall the double integral $G\left( t \right) = \mathop \smallint \limits_{x = 0}^t \mathop \smallint \limits_{y = 0}^x f\left( y \right){\rm{d}}y{\rm{d}}x$. We see that the domain is a vertically simple region whose description is given by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le t,0 \le y \le x} \right\}$ Now, we change the order of integration such that the domain becomes a horizontally simple region (please see the figure attached). In this case, the domain description becomes ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le y \le t,y \le x \le t} \right\}$ Thus, by changing the order of the integral we get $G\left( t \right) = \mathop \smallint \limits_{y = 0}^t \left( {\mathop \smallint \limits_{x = y}^t f\left( y \right){\rm{d}}x} \right){\rm{d}}y$ $ = \mathop \smallint \limits_{y = 0}^t f\left( y \right)\left( {x|_y^t} \right){\rm{d}}y$ $ = \mathop \smallint \limits_0^t \left( {t - y} \right)f\left( y \right){\rm{d}}y$ Hence, $G\left( t \right) = \mathop \smallint \limits_0^t \left( {t - y} \right)f\left( y \right){\rm{d}}y$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.