Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Preliminary Questions - Page 870: 2

Answer

(a) meaningful triple integral (b) not a meaningful triple integral

Work Step by Step

(a) We have $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^x \mathop \smallint \limits_{x + y}^{2x + y} {{\rm{e}}^{x + y + z}}{\rm{d}}z{\rm{d}}y{\rm{d}}x$. 1. Inner integral: $\mathop \smallint \limits_{x + y}^{2x + y} {{\rm{e}}^{x + y + z}}{\rm{d}}z$ The inner integral is a function of $x$ and $y$: $g\left( {x,y} \right) = \mathop \smallint \limits_{x + y}^{2x + y} {{\rm{e}}^{x + y + z}}{\rm{d}}z$ 2. Middle integral: $\mathop \smallint \limits_0^x g\left( {x,y} \right){\rm{d}}y$ The middle integral is a function of $x$ alone: $h\left( x \right) = \mathop \smallint \limits_0^x g\left( {x,y} \right){\rm{d}}y$ 3. The outer integral: $\mathop \smallint \limits_0^1 h\left( x \right){\rm{d}}x$ The outer integral is evaluated with respect to $x$, so it is a meaningful triple integral. (b) We have $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^z \mathop \smallint \limits_{x + y}^{2x + y} {{\rm{e}}^{x + y + z}}{\rm{d}}z{\rm{d}}y{\rm{d}}x$. 1. Inner integral: $\mathop \smallint \limits_{x + y}^{2x + y} {{\rm{e}}^{x + y + z}}{\rm{d}}z$ The inner integral is a function of $x$ and $y$: $g\left( {x,y} \right) = \mathop \smallint \limits_{x + y}^{2x + y} {{\rm{e}}^{x + y + z}}{\rm{d}}z$ 2. Middle integral: $\mathop \smallint \limits_0^z g\left( {x,y} \right){\rm{d}}y$ The integral is evaluated with respect to $y$, holding $x$ constant. However, because there is a $z$ variable at the upper limit, it is also a function of $z$: $h\left( {x,z} \right) = \mathop \smallint \limits_0^z g\left( {x,y} \right){\rm{d}}y$ The integral does not make sense. Without further evaluating the outer integral, we conclude that it is not a meaningful triple integral.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.