Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 808: 2

Answer

(a) $\frac{{\partial f}}{{\partial x}} = \cos \left( y \right)$, ${\ \ }$ $\frac{{\partial f}}{{\partial y}} = - x\sin \left( y \right)$ (b) $\frac{{\partial f}}{{\partial v}} = 2v\cos \left( y \right) + x\sin \left( y \right)$ (c) For $\left( {u,v} \right) = \left( {2,1} \right)$, we get $\left( {x,y} \right) = \left( {5,1} \right)$ $\frac{{\partial f}}{{\partial v}}{|_{\left( {u,v} \right) = \left( {2,1} \right)}} = 2\cos \left( 1 \right) + 5\sin \left( 1 \right)$

Work Step by Step

(a) We have $f\left( {x,y} \right) = x\cos \left( y \right)$ and $x = {u^2} + {v^2}$ and $y = u - v$. The primary derivatives are $\frac{{\partial f}}{{\partial x}} = \cos \left( y \right)$, ${\ \ }$ $\frac{{\partial f}}{{\partial y}} = - x\sin \left( y \right)$ Calculate $\frac{{\partial x}}{{\partial v}} = 2v$, ${\ \ }$ $\frac{{\partial y}}{{\partial v}} = - 1$ (b) Using the Chain Rule we calculate: $\frac{{\partial f}}{{\partial v}} = \frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial v}} + \frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial v}}$ $\frac{{\partial f}}{{\partial v}} = 2v\cos \left( y \right) + x\sin \left( y \right)$ (c) Since $x = {u^2} + {v^2}$ and $y = u - v$. For $\left( {u,v} \right) = \left( {2,1} \right)$, we get $\left( {x,y} \right) = \left( {5,1} \right)$ From part (b) we obtain $\frac{{\partial f}}{{\partial v}} = 2v\cos \left( y \right) + x\sin \left( y \right)$. So, $\frac{{\partial f}}{{\partial v}}{|_{\left( {u,v} \right) = \left( {2,1} \right)}} = 2\cos \left( 1 \right) + 5\sin \left( 1 \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.