Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 808: 15

Answer

$$2\cos 2$$

Work Step by Step

Given $$g(x, y)=x^{2}-y^{2},\ \ \ \ \ \ x=e^{u} \cos v,\ \ \ y=e^u\sin v$$ Since at $(u,v)=(0,1)$; $(x,y)= (\cos(1),\sin(1))$ $$ \frac{\partial g}{\partial \:x}=2x,\ \ \ \ \ \frac{\partial g}{\partial \:y}=-2y \\ \frac{\partial x}{\partial u}=e^{u} \cos v,\ \ \ \ \ \ \ \ \ \ \ \frac{\partial y}{\partial u}=e^u\sin v $$ Then \begin{align*} \frac{\partial g }{ \partial u}&=\frac{\partial g }{ \partial x}\frac{\partial x }{ \partial u}+\frac{\partial g }{ \partial y}\frac{\partial y }{ \partial u}\\ &= 2e^u (x\cos v -y \sin v)\\ &=2e^{2u}( \cos2v) \end{align*} Hence \begin{align*} \frac{\partial g }{ \partial u}\bigg|_{(0,1)}&= 2\cos 2 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.