Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.6 The Chain Rule - Exercises - Page 808: 13

Answer

$$\frac{-1}{6}$$

Work Step by Step

Given $$g(x, y)=\frac{1}{x+y^{2}},\ \ \ \ \ x=r\cos\theta,\ \ \ y=r\sin \theta ,\ \ (r,\theta )= \left(2 \sqrt{2}, \frac{\pi}{4}\right)$$ We see that at $(r,\theta )= \left(2 \sqrt{2}, \frac{\pi}{4}\right)$, we have $(x,y)= (2,2)$ and \begin{align*} \frac{\partial g }{\partial \:x}&= \frac{-1}{\left(x+y^2\right)^2},\ \ \ \ \ \frac{\partial g }{\partial \:y}=\frac{-2y}{\left(x+y^2\right)^2}\\ \frac{\partial x }{\partial \:\theta}&=-r\sin \theta,\ \ \ \ \ \ \ \ \ \ \frac{\partial y }{\partial \:\theta}=r\cos\theta \end{align*} Then \begin{align*} \frac{\partial g }{\partial \:\theta }&= \frac{\partial g }{\partial \:x} \frac{\partial x }{\partial \:\theta}+ \frac{\partial g }{\partial \:y} \frac{\partial y }{\partial \:\theta}\\ &=\frac{r\sin \theta}{(x+y^2)^2} +\frac{2r\cos \theta}{(x+y^2)^2}\\ &=\frac{y}{(x+y^2)^2} -\frac{2x}{(x+y^2)^2} \end{align*} Hence $$ \frac{\partial g }{\partial \:\theta }\bigg|_{(x,y)=(2,2)}=\frac{-1}{6}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.