Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.3 Partial Derivatives - Exercises - Page 782: 72

Answer

${u_{xxx}} = - 8sec{h^2}\left( {x - t} \right){\tanh ^3}\left( {x - t} \right) + 16sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$

Work Step by Step

We have $u\left( {x,t} \right) = sec{h^2}\left( {x - t} \right)$. From Section 7.9 on page 378, we have $\frac{d}{{dv}}sechv = - sechv\tanh v$ $\frac{d}{{dv}}\tanh v = sec{h^2}v$ So, ${u_x} = \left( {2sech\left( {x - t} \right)} \right)\left( { - sech\left( {x - t} \right)\tanh \left( {x - t} \right)} \right)$ $ = - 2sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)$ $ = - 2u\tanh \left( {x - t} \right)$ ${u_{xx}} = - 2{u_x}\tanh \left( {x - t} \right) - 2usec{h^2}\left( {x - t} \right)$ $ = - 2{u_x}\tanh \left( {x - t} \right) - 2{u^2}$ ${u_{xxx}} = - 2{u_{xx}}\tanh \left( {x - t} \right) - 2{u_x}sec{h^2}\left( {x - t} \right) - 4u{u_x}$ $ = - 2{u_{xx}}\tanh \left( {x - t} \right) - 2{u_x}u - 4u{u_x}$ $ = - 2{u_{xx}}\tanh \left( {x - t} \right) - 6u{u_x}$ From previous results we have ${u_x} = - 2sec{h^2}\left( {x - t} \right)\tanh \left( {x - t} \right)$ ${u_{xx}} = - 2{u_x}\tanh \left( {x - t} \right) - 2usec{h^2}\left( {x - t} \right)$ $ = 4sec{h^2}\left( {x - t} \right){\tanh ^2}\left( {x - t} \right) - 2sec{h^4}\left( {x - t} \right)$ Substituting these in ${u_{xxx}}$ ${u_{xxx}} = - 2{u_{xx}}\tanh \left( {x - t} \right) - 6u{u_x}$ gives ${u_{xxx}} = - 8sec{h^2}\left( {x - t} \right){\tanh ^3}\left( {x - t} \right) + 4sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$ $ + 12sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$ Finally, ${u_{xxx}} = - 8sec{h^2}\left( {x - t} \right){\tanh ^3}\left( {x - t} \right) + 16sec{h^4}\left( {x - t} \right)\tanh \left( {x - t} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.