Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 744: 23

Answer

The height $H$ at which the bullet hits the tower is $H = 355$ m.

Work Step by Step

We have the initial velocity: ${\bf{v}}\left( 0 \right) = \left( {120\cos \frac{\pi }{4},120\sin \frac{\pi }{4}} \right) = \left( {60\sqrt 2 ,60\sqrt 2 } \right)$ Let the initial position be ${\bf{r}}\left( 0 \right) = \left( {0,0} \right)$. The only force that acts on the bullet is the gravitational force. So, the acceleration due to gravity is ${\bf{a}}\left( t \right) = - 9.8{\bf{j}}$ $m/{s^2}$. 1. Find the velocity vector We have ${\bf{v}}\left( t \right) = \smallint {\bf{a}}\left( t \right){\rm{d}}t = \smallint \left( {0, - 9.8} \right){\rm{d}}t = \left( {0, - 9.8t} \right) + {{\bf{c}}_0}$ The initial condition ${\bf{v}}\left( 0 \right) = \left( {60\sqrt 2 ,60\sqrt 2 } \right)$ gives $\left( {60\sqrt 2 ,60\sqrt 2 } \right) = \left( {0,0} \right) + {{\bf{c}}_0}$ ${{\bf{c}}_0} = \left( {60\sqrt 2 ,60\sqrt 2 } \right)$ Thus, ${\bf{v}}\left( t \right) = \left( {0, - 9.8t} \right) + \left( {60\sqrt 2 ,60\sqrt 2 } \right)$ ${\bf{v}}\left( t \right) = \left( {60\sqrt 2 , - 9.8t + 60\sqrt 2 } \right)$ 2. Find the position vector We have ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {60\sqrt 2 , - 9.8t + 60\sqrt 2 } \right){\rm{d}}t$ ${\bf{r}}\left( t \right) = \left( {60\sqrt 2 t, - 4.9{t^2} + 60\sqrt 2 t} \right) + {{\bf{c}}_1}$ The initial condition ${\bf{r}}\left( 0 \right) = \left( {0,0} \right)$ gives $\left( {0,0} \right) = \left( {0,0} \right) + {{\bf{c}}_1}$ ${{\bf{c}}_1} = \left( {0,0} \right)$ Thus, ${\bf{r}}\left( t \right) = \left( {60\sqrt 2 t, - 4.9{t^2} + 60\sqrt 2 t} \right)$ 3. Solve for $t$ when it hits the tower From the previous result, we obtain the position vector: ${\bf{r}}\left( t \right) = \left( {60\sqrt 2 t, - 4.9{t^2} + 60\sqrt 2 t} \right)$ Since the tower is located $d=600$ m away, we solve for ${t_H}$ when it hits the tower: $600 = 60\sqrt 2 {t_H}$ ${t_H} = \frac{{10}}{{\sqrt 2 }}{\rm{s}}$ The height $H$ at which the bullet hits the tower is then $H = - 4.9{t_H}^2 + 60\sqrt 2 {t_H}$ $H = - 4.9{\left( {\frac{{10}}{{\sqrt 2 }}} \right)^2} + 60\sqrt 2 \left( {\frac{{10}}{{\sqrt 2 }}} \right)$ $H = 355$ m
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.