Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 744: 15

Answer

The position vector: ${\bf{r}}\left( t \right) = \left( {\frac{1}{6}{t^3} + 3t,2{t^2} - 2t} \right)$ The velocity vector: ${\bf{v}}\left( t \right) = \left( {\frac{1}{2}{t^2} + 3,4t - 2} \right)$

Work Step by Step

Find the velocity vector: ${\bf{v}}\left( t \right) = \smallint {\bf{a}}\left( t \right){\rm{d}}t = \smallint \left( {t,4} \right){\rm{d}}t = \left( {\frac{1}{2}{t^2},4t} \right) + {{\bf{c}}_0}$ The initial condition ${\bf{v}}\left( 0 \right) = \left( {3, - 2} \right)$ gives $\left( {3, - 2} \right) = {{\bf{c}}_0}$ Thus, ${\bf{v}}\left( t \right) = \left( {\frac{1}{2}{t^2},4t} \right) + \left( {3, - 2} \right)$ ${\bf{v}}\left( t \right) = \left( {\frac{1}{2}{t^2} + 3,4t - 2} \right)$ Find the position vector: ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {\frac{1}{2}{t^2} + 3,4t - 2} \right){\rm{d}}t = \left( {\frac{1}{6}{t^3} + 3t,2{t^2} - 2t} \right) + {{\bf{c}}_1}$ The initial condition ${\bf{r}}\left( 0 \right) = \left( {0,0} \right)$ gives $\left( {0,0} \right) = {{\bf{c}}_1}$ Thus, ${\bf{r}}\left( t \right) = \left( {\frac{1}{6}{t^3} + 3t,2{t^2} - 2t} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.