Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.5 Motion in 3-Space - Exercises - Page 744: 19

Answer

The initial speed of the bullet must be $72.75$ m/s.

Work Step by Step

Let ${v_0}$ denote the initial speed of the bullet. So, we have the initial velocity: ${\bf{v}}\left( 0 \right) = \left( {{v_0}\cos 45^\circ ,{v_0}\sin 45^\circ } \right) = {v_0}\left( {\frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)$ Let the initial position be ${\bf{r}}\left( 0 \right) = \left( {0,0} \right)$. The only force that acts on the bullet is the gravitational force. So, the acceleration due to gravity is ${\bf{a}}\left( t \right) = - 9.8{\bf{j}}$ $m/{s^2}$. 1. Find the velocity vector We have ${\bf{v}}\left( t \right) = \smallint {\bf{a}}\left( t \right){\rm{d}}t = \smallint \left( {0, - 9.8} \right){\rm{d}}t = \left( {0, - 9.8t} \right) + {{\bf{c}}_0}$ The initial condition ${\bf{v}}\left( 0 \right) = {v_0}\left( {\frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)$ gives ${v_0}\left( {\frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right) = \left( {0,0} \right) + {{\bf{c}}_0}$ ${{\bf{c}}_0} = {v_0}\left( {\frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)$ Thus, ${\bf{v}}\left( t \right) = \left( {0, - 9.8t} \right) + {v_0}\left( {\frac{1}{2}\sqrt 2 ,\frac{1}{2}\sqrt 2 } \right)$ ${\bf{v}}\left( t \right) = \left( {\frac{{{v_0}}}{2}\sqrt 2 , - 9.8t + \frac{{{v_0}}}{2}\sqrt 2 } \right)$ 2. Find the position vector We have ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {\frac{{{v_0}}}{2}\sqrt 2 , - 9.8t + \frac{{{v_0}}}{2}\sqrt 2 } \right){\rm{d}}t$ ${\bf{r}}\left( t \right) = \left( {\frac{{{v_0}}}{2}\sqrt 2 t, - 4.9{t^2} + \frac{{{v_0}}}{2}\sqrt 2 t} \right) + {{\bf{c}}_1}$ The initial condition ${\bf{r}}\left( 0 \right) = \left( {0,0} \right)$ gives $\left( {0,0} \right) = \left( {0,0} \right) + {{\bf{c}}_1}$ ${{\bf{c}}_1} = \left( {0,0} \right)$ Thus, ${\bf{r}}\left( t \right) = \left( {\frac{{{v_0}}}{2}\sqrt 2 t, - 4.9{t^2} + \frac{{{v_0}}}{2}\sqrt 2 t} \right)$ 3. Solve for ${v_0}$ The top of a $120$-m tower located $180$ m away can be represented by the point $\left( {180,120} \right)$. Thus, the bullet hits this point if there exists a time $t$ such that ${\bf{r}}\left( t \right) = \left( {\frac{{{v_0}}}{2}\sqrt 2 t, - 4.9{t^2} + \frac{{{v_0}}}{2}\sqrt 2 t} \right) = \left( {180,120} \right)$ In components we get $\frac{{{v_0}}}{2}\sqrt 2 t = 180$, ${\ \ \ }$ $ - 4.9{t^2} + \frac{{{v_0}}}{2}\sqrt 2 t = 120$ The first equation yields $t = \frac{{360}}{{{v_0}\sqrt 2 }}$. Substituting it in the second equation gives $ - 4.9{\left( {\frac{{360}}{{{v_0}\sqrt 2 }}} \right)^2} + \frac{{{v_0}}}{2}\sqrt 2 \left( {\frac{{360}}{{{v_0}\sqrt 2 }}} \right) = 120$ $ - 4.9{\left( {\frac{{360}}{{{v_0}\sqrt 2 }}} \right)^2} + 180 = 120$ $4.9{\left( {\frac{{360}}{{{v_0}\sqrt 2 }}} \right)^2} = 60$ Solving for ${v_0}$ we obtain ${v_0} = 72.75$. Thus, the initial speed of the bullet must be $72.75$ m/s.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.