Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 725: 3

Answer

$15+ln(4)$

Work Step by Step

$r(t) = \langle 2t, ln(t), t^2 \rangle$, so $r'(t) = \langle 2, \frac{1}{t}, 2t \rangle$ $length = \int_1^4 \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}dt$ $= \int_1^4 \sqrt{2^2 + (\frac{1}{t})^2 + (2t)^2}dt$ $= \int_1^4 \sqrt{4 + \frac{1}{t^2} + 4t^2}dt$ $= \int_1^4 \sqrt{\frac{4t^4+4t^2+1}{t^2}}dt$ $= \int_1^4 \sqrt{\frac{(2t^2+1)^2}{t^2}}dt$ $= \int_1^4 \frac{2t^2+1}{t}dt$ $= \int_1^4 (2t+\frac{1}{t})dt$ $= [t^2+ln(t) ]_1^4$ $= (4^2+ln(4)) - (1^2+ln(1))$ $= 16+ln(4) - 1$ $= 15+ln(4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.