Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.3 Arc Length and Speed - Exercises - Page 725: 10

Answer

The arc length function: $s\left( t \right) = 2t + \ln t - 2$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {4{t^{1/2}},\ln t,2t} \right)$ and $a=1$. The derivative is ${\bf{r}}'\left( t \right) = \left( {2{t^{ - 1/2}},\frac{1}{t},2} \right)$. So, $||{\bf{r}}'\left( t \right)|{|^2} = \left( {2{t^{ - 1/2}},\frac{1}{t},2} \right)\cdot\left( {2{t^{ - 1/2}},\frac{1}{t},2} \right)$ $||{\bf{r}}'\left( t \right)|{|^2} = \frac{4}{t} + \frac{1}{{{t^2}}} + 4 = \frac{{4t + 1 + 4{t^2}}}{{{t^2}}}$ $||{\bf{r}}'\left( t \right)|{|^2} = {\left( {\frac{{2t + 1}}{t}} \right)^2}$ The arc length function is $s\left( t \right) = \mathop \smallint \limits_1^t ||{\bf{r}}'\left( u \right)||{\rm{d}}u$ $s\left( t \right) = \mathop \smallint \limits_1^t \frac{{2u + 1}}{u}{\rm{d}}u = \mathop \smallint \limits_1^t \left( {2 + \frac{1}{u}} \right){\rm{d}}u$ $s\left( t \right) = \left( {2u + \ln u} \right)|_1^t = 2t - 2 + \ln t$ $s\left( t \right) = 2t + \ln t - 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.