Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - Chapter Review Exercises - Page 639: 53

Answer

$\frac{{dy}}{{dx}} = \left( {{e^2} - 1} \right)\frac{x}{y}$ holds on both standard ellipse and hyperbola: $\begin{array}{*{20}{c}} {}&{Ellipse\left( {a > b} \right)}&{Hyperbola}\\ {Standard {\ } eq.}&{{{\left( {\frac{x}{a}} \right)}^2} + {{\left( {\frac{y}{b}} \right)}^2} = 1}&{{{\left( {\frac{x}{a}} \right)}^2} - {{\left( {\frac{y}{b}} \right)}^2} = 1}\\ {Derivatives}&{\frac{{dy}}{{dx}} = \left( {{e^2} - 1} \right)\frac{x}{y}}&{\frac{{dy}}{{dx}} = \left( {{e^2} - 1} \right)\frac{x}{y}} \end{array}$

Work Step by Step

By Theorem 1 and Theorem 2 of Section 12.5, the equation of the ellipse and hyperbola in standard position is Eq. (5) ${\ \ \ }$ ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} = 1$ and Eq. (7) ${\ \ \ }$ ${\left( {\frac{x}{a}} \right)^2} - {\left( {\frac{y}{b}} \right)^2} = 1$, ${\ \ \ }$ respectively. Taking the derivative of $y$ with respect to $x$ gives Case 1: ellipse $\frac{2}{a}\left( {\frac{x}{a}} \right) + \frac{2}{b}\left( {\frac{y}{b}} \right)\frac{{dy}}{{dx}} = 0$, ${\ }$ $\frac{{dy}}{{dx}} = \frac{{ - 2x/{a^2}}}{{2y/{b^2}}}$, ${\ }$ $\frac{{dy}}{{dx}} = - \frac{x}{y}\frac{{{b^2}}}{{{a^2}}}$ Consider $a>b>0$. By Theorem 4, $e = \frac{c}{a} = \frac{{\sqrt {{a^2} - {b^2}} }}{a} = \sqrt {1 - \frac{{{b^2}}}{{{a^2}}}} $. So, $\frac{{{b^2}}}{{{a^2}}} = 1 - {e^2}$. Thus, for the ellipse: $\frac{{dy}}{{dx}} = \left( {{e^2} - 1} \right)\frac{x}{y}$. Case 2: hyperbola $\frac{2}{a}\left( {\frac{x}{a}} \right) - \frac{2}{b}\left( {\frac{y}{b}} \right)\frac{{dy}}{{dx}} = 0$, ${\ }$ $\frac{{dy}}{{dx}} = \frac{{2x/{a^2}}}{{2y/{b^2}}}$, ${\ }$ $\frac{{dy}}{{dx}} = \frac{x}{y}\frac{{{b^2}}}{{{a^2}}}$ By Theorem 4, $e = \frac{c}{a} = \frac{{\sqrt {{a^2} + {b^2}} }}{a} = \sqrt {1 + \frac{{{b^2}}}{{{a^2}}}} $. So, $\frac{{{b^2}}}{{{a^2}}} = {e^2} - 1$. Thus, for the hyperbola: $\frac{{dy}}{{dx}} = \left( {{e^2} - 1} \right)\frac{x}{y}$. In summary: $\begin{array}{*{20}{c}} {}&{Ellipse\left( {a > b} \right)}&{Hyperbola}\\ {Standard {\ } eq.}&{{{\left( {\frac{x}{a}} \right)}^2} + {{\left( {\frac{y}{b}} \right)}^2} = 1}&{{{\left( {\frac{x}{a}} \right)}^2} - {{\left( {\frac{y}{b}} \right)}^2} = 1}\\ {Derivatives}&{\frac{{dy}}{{dx}} = \left( {{e^2} - 1} \right)\frac{x}{y}}&{\frac{{dy}}{{dx}} = \left( {{e^2} - 1} \right)\frac{x}{y}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.