Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - Chapter Review Exercises - Page 639: 43

Answer

The foci are ${F_1} = \left( {0,\sqrt {\frac{{12}}{5}} } \right)$ and ${F_2} = \left( {0, - \sqrt {\frac{{12}}{5}} } \right)$. The focal vertices are $\left( {0, \pm b} \right) = \left( {0, \pm \frac{4}{{\sqrt 5 }}} \right)$ and the minor vertices are $\left( { \pm a,0} \right) = \left( { \pm \frac{2}{{\sqrt 5 }},0} \right)$.

Work Step by Step

We have ${\left( {2x + \frac{1}{2}y} \right)^2} = 4 - {\left( {x - y} \right)^2}$ Multiply both sides by $4$ gives $4{\left( {2x + \frac{1}{2}y} \right)^2} = 16 - 4{\left( {x - y} \right)^2}$ ${\left( {4x + y} \right)^2} = 16 - 4{\left( {x - y} \right)^2}$ ${\left( {4x + y} \right)^2} + 4{\left( {x - y} \right)^2} = 16$ $16{x^2} + 8xy + {y^2} + 4\left( {{x^2} - 2xy + {y^2}} \right) = 16$ $16{x^2} + 8xy + {y^2} + 4{x^2} - 8xy + 4{y^2} = 16$ $20{x^2} + 5{y^2} = 16$ $\frac{5}{4}{x^2} + \frac{5}{{16}}{y^2} = 1$ ${\left( {\frac{x}{{2/\sqrt 5 }}} \right)^2} + {\left( {\frac{y}{{4/\sqrt 5 }}} \right)^2} = 1$ By Theorem 1 of Section 12.5, this is the equation of an ellipse in standard position, where $a = \frac{2}{{\sqrt 5 }}$ and $b = \frac{4}{{\sqrt 5 }}$. Since $b>a>0$, we have $c = \sqrt {\frac{{16}}{5} - \frac{4}{5}} = \sqrt {\frac{{12}}{5}} $ The foci are ${F_1} = \left( {0,\sqrt {\frac{{12}}{5}} } \right)$ and ${F_2} = \left( {0, - \sqrt {\frac{{12}}{5}} } \right)$. The focal vertices are $\left( {0, \pm b} \right) = \left( {0, \pm \frac{4}{{\sqrt 5 }}} \right)$ and the minor vertices are $\left( { \pm a,0} \right) = \left( { \pm \frac{2}{{\sqrt 5 }},0} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.