Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - Chapter Review Exercises - Page 639: 44

Answer

The vertices are $\left( { \pm \frac{1}{{\sqrt 2 }},3} \right)$. The foci are ${F_1} = \left( {\sqrt {\frac{3}{2}} ,3} \right)$ and ${F_2} = \left( { - \sqrt {\frac{3}{2}} ,3} \right)$.

Work Step by Step

Write ${\left( {y - 3} \right)^2} = 2{x^2} - 1$ $2{x^2} - {\left( {y - 3} \right)^2} = 1$ ${\left( {\frac{x}{{1/\sqrt 2 }}} \right)^2} - {\left( {\frac{{y - 3}}{1}} \right)^2} = 1$ By Theorem 2 of Section 12.5, this is the equation of a hyperbola centered at $\left( {0,3} \right)$, where $a = \frac{1}{{\sqrt 2 }}$ and $b=1$. So, the vertices are $\left( { \pm a,0} \right) + \left( {0,3} \right) = \left( { \pm \frac{1}{{\sqrt 2 }},3} \right)$. We have $c = \sqrt {{a^2} + {b^2}} = \sqrt {\frac{1}{2} + 1} = \sqrt {\frac{3}{2}} $ The foci are $\left( { \pm c,0} \right) + \left( {0,3} \right) = \left( { \pm \sqrt {\frac{3}{2}} ,3} \right)$. So, ${F_1} = \left( {\sqrt {\frac{3}{2}} ,3} \right)$ and ${F_2} = \left( { - \sqrt {\frac{3}{2}} ,3} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.