Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 588: 45

Answer

4 terms are needed. Using a calculator, we compute: ${S_4} \approx 0.182267$, ${\ \ \ \ \ }$ $\ln 1.2 \approx 0.182322$ Hence, $\left| {\ln 1.2 - {S_4}} \right| \approx 0.0000549 \lt 0.0001$

Work Step by Step

From Table 2 we get $S = \ln \left( {1 + x} \right) = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{x^n}}}{n} = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for $\left| x \right| \lt 1$ and $x=1$. We have for this alternating series, the positive terms: ${b_n} = \dfrac{{{x^n}}}{n}$. Let $S = \ln \left( {1 + x} \right) = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{{\left( { - 1} \right)}^{n - 1}}{x^n}}}{n}$. By Eq. (2) in Section 11.4: $\left| {S - {S_n}} \right| \lt {b_{n + 1}}$ We choose $n$ so that $\left| {S - {S_n}} \right| \lt {b_{n + 1}} \lt {10^{ - 4}}$ For $x = 0.2$, we have $\dfrac{{{{\left( {\dfrac{1}{5}} \right)}^{n + 1}}}}{{n + 1}} \lt {10^{ - 4}}$ ${5^{n + 1}}\left( {n + 1} \right) > {10^4}$ We evaluate and list some values of $n$ in the following table: $\begin{array}{*{20}{c}} n&{}&{{5^{n + 1}}\left( {n + 1} \right)}\\ 2&{}&{375}\\ 3&{}&{2500}\\ 4&{}&{15625}\\ 5&{}&{93750} \end{array}$ Based on the results in the table above, we choose $N=4$ such that $\ln 1.2$ is within an error of at most $0.0001$. Using a calculator, we compute: ${S_4} \approx 0.182267$, ${\ \ \ \ \ }$ $\ln 1.2 \approx 0.182322$ Hence, $\left| {\ln 1.2 - {S_4}} \right| \approx 0.0000549 \lt 0.0001$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.