Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.7 Taylor Series - Exercises - Page 588: 31

Answer

The Taylor series centered at $c=5$ is $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^{n + 1}}}}{{{4^{n + 1}}}}{\left( {x - 5} \right)^n}$ It is valid for $\left| {x - 5} \right| \lt 4$.

Work Step by Step

We compute the derivatives and list them in the table below: $\begin{array}{*{20}{c}} n&{{f^{\left( n \right)}}\left( x \right)}&{\dfrac{{{f^{\left( n \right)}}\left( x \right)}}{{n!}}}&{\dfrac{{{f^{\left( n \right)}}\left( 5 \right)}}{{n!}}}\\ 0&{\dfrac{1}{{1 - x}}}&{\dfrac{1}{{1 - x}}}&{ - \dfrac{1}{4}}\\ 1&{\dfrac{1}{{{{\left( {1 - x} \right)}^2}}}}&{\dfrac{1}{{{{\left( {1 - x} \right)}^2}}}}&{\dfrac{1}{{16}}}\\ 2&{\dfrac{2}{{{{\left( {1 - x} \right)}^3}}}}&{\dfrac{1}{{{{\left( {1 - x} \right)}^3}}}}&{ - \dfrac{1}{{64}}}\\ 3&{\dfrac{6}{{{{\left( {1 - x} \right)}^4}}}}&{\dfrac{1}{{{{\left( {1 - x} \right)}^4}}}}&{\dfrac{1}{{256}}}\\ 4&{\dfrac{{24}}{{{{\left( {1 - x} \right)}^5}}}}&{\dfrac{1}{{{{\left( {1 - x} \right)}^5}}}}&{ - \dfrac{1}{{1024}}} \end{array}$ By Theorem 1, the Taylor series is given by $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{f^{\left( n \right)}}\left( 5 \right)}}{{n!}}{\left( {x - 5} \right)^n}$ Using the table above, we get $T\left( x \right) = - \dfrac{1}{4} + \dfrac{1}{{16}}\left( {x - 5} \right) - \dfrac{1}{{64}}{\left( {x - 5} \right)^2} + \dfrac{1}{{256}}{\left( {x - 5} \right)^3} - \dfrac{1}{{1024}}{\left( {x - 5} \right)^4} + \cdot\cdot\cdot$ So, $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^{n + 1}}}}{{{4^{n + 1}}}}{\left( {x - 5} \right)^n}$. Let ${a_n} = \dfrac{{{{\left( { - 1} \right)}^{n + 1}}}}{{{4^{n + 1}}}}{\left( {x - 5} \right)^n}$. We compute $\rho $ from the Ratio Test: $\rho = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{a_{n + 1}}}}{{{a_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\dfrac{{{4^{n + 1}}}}{{{4^{n + 2}}}}\dfrac{{{{\left( {x - 5} \right)}^{n + 1}}}}{{{{\left( {x - 5} \right)}^n}}}} \right| = \dfrac{1}{4}\left| {x - 5} \right|$ We find that $\rho \lt 1$ if $\dfrac{1}{4}\left| {x - 5} \right| \lt 1$, or $\left| {x - 5} \right| \lt 4$. Thus, the Taylor series centered at $c=5$ is $T\left( x \right) = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{{\left( { - 1} \right)}^{n + 1}}}}{{{4^{n + 1}}}}{\left( {x - 5} \right)^n}$. It is valid for $\left| {x - 5} \right| \lt 4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.