Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 514: 96

Answer

$s \approx 7.6337$

Work Step by Step

$$\eqalign{ & {\text{Let the function }}y = {x^{2/3}}{\text{ on the interval }}\left[ {1,8} \right] \cr & {\text{The arc length of the function }}y{\text{ on the interval }}\left[ {a,b} \right]{\text{ is}} \cr & s = \int_a^b {\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} dx} \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{x^{2/3}}} \right] \cr & \frac{{dy}}{{dx}} = \frac{2}{3}{x^{ - 1/3}} \cr & {\text{Substituting }}\frac{{dy}}{{dx}}{\text{ into the arc length formula}} \cr & s = \int_1^8 {\sqrt {1 + {{\left( {\frac{2}{3}{x^{ - 1/3}}} \right)}^2}} dx} \cr & s = \int_1^8 {\sqrt {1 + \frac{4}{9}{x^{ - 2/3}}} dx} \cr & {\text{Integrate using a graphing utility or a computer}}{\text{, we obtain}} \cr & s \approx 7.6337 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.