Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 514: 88

Answer

$V = \left( {\sqrt 2 - 1} \right)\pi $

Work Step by Step

$$\eqalign{ & x = 0,{\text{ }}y = \cos {x^2},{\text{ }}y = \sin {x^2},\;{\text{ }}x = \frac{{\sqrt \pi }}{2} \cr & {\text{Using the shell method about the }}y{\text{ - axis}} \cr & V = \int_a^b {2\pi x\left[ {f\left( x \right) - g\left( x \right)} \right]} dx \cr & {\text{From the graph of the region shown below}} \cr & \cos {x^2} \geqslant \sin {x^2}{\text{ on the interval }}\left[ {0,\frac{{\sqrt \pi }}{2}} \right]{\text{ }} \cr & {\text{Therefore}}{\text{,}} \cr & V = \int_0^{\sqrt \pi /2} {2\pi x\left( {\cos {x^2} - \sin {x^2}} \right)} dx \cr & V = \pi \int_0^{\sqrt \pi /2} {\left( {2x\cos {x^2} - 2x\sin {x^2}} \right)} dx \cr & {\text{Integrating}} \cr & V = \pi \left[ {\sin {x^2} + \cos {x^2}} \right]_0^{\sqrt \pi /2} \cr & V = \pi \left[ {\sin {{\left( {\frac{{\sqrt \pi }}{2}} \right)}^2} + \cos {{\left( {\frac{{\sqrt \pi }}{2}} \right)}^2}} \right] - \pi \left[ {\sin {{\left( 0 \right)}^2} + \cos {{\left( 0 \right)}^2}} \right] \cr & {\text{Simplifying}} \cr & V = \pi \left[ {\sin \left( {\frac{\pi }{4}} \right) + \cos \left( {\frac{\pi }{4}} \right)} \right] - \pi \left[ 1 \right] \cr & V = \pi \left( {\frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2}} \right) - \pi \cr & V = \pi \left( {\sqrt 2 } \right) - \pi \cr & V = \left( {\sqrt 2 - 1} \right)\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.