Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 514: 95

Answer

$s \approx 1.0319$

Work Step by Step

$$\eqalign{ & {\text{Let the function }}y = \tan \pi x{\text{ on the interval }}\left[ {0,\frac{1}{4}} \right] \cr & {\text{The arc length of the function }}y{\text{ on the interval }}\left[ {a,b} \right]{\text{ is}} \cr & s = \int_a^b {\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} dx} \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\tan \pi x} \right] \cr & \frac{{dy}}{{dx}} = \pi {\sec ^2}\pi x \cr & {\text{Substituting }}\frac{{dy}}{{dx}}{\text{ into the arc length formula}} \cr & s = \int_0^{1/4} {\sqrt {1 + {{\left( {\pi {{\sec }^2}\pi x} \right)}^2}} dx} \cr & s = \int_0^{1/4} {\sqrt {1 + {\pi ^2}{{\sec }^4}\pi x} dx} \cr & {\text{Integrate using a graphing utility or a computer}}{\text{, we obtain}} \cr & s \approx 1.0319 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.