Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.5 Exercises - Page 483: 7

Answer

$$W = 160{\text{in - lb}}$$

Work Step by Step

$$\eqalign{ & {\text{From the information we have:}} \cr & F\left( x \right) = 20{\text{pounds}},{\text{ }}\left( {{\text{Variable force}}} \right) \cr & x = {\text{9inches}},{\text{ }}\left( {{\text{Variable distance}}} \right) \cr & \cr & {\text{Using the Hooke's Law to find the spring constant }}k \cr & F\left( x \right) = kx \cr & 20 = k\left( 9 \right) \cr & k = \frac{{20}}{9} \cr & \cr & F\left( x \right) = kx \cr & F\left( x \right) = \frac{{20}}{9}x \cr & \cr & {\text{The work required is }} \cr & W = \int_a^b {F\left( x \right)} dx \cr & {\text{Stretching the spring 0ft to 1ft, }} \cr & 1{\text{ft}}\left( {\frac{{12{\text{in}}}}{{1{\text{ft}}}}} \right) = 12{\text{in}} \cr & {\text{Interval }}\underbrace {\left[ {0{\text{in}},12{\text{in}}} \right]}_{\left[ {a,b} \right]},{\text{ then}} \cr & W = \int_0^{12} {\frac{{20}}{9}x} dx \cr & {\text{Integrating}} \cr & W = \frac{{20}}{9}\left[ {\frac{1}{2}{x^2}} \right]_0^{12} \cr & W = \frac{{10}}{9}\left[ {{x^2}} \right]_0^{12} \cr & W = \frac{{10}}{9}\left[ {{{\left( {12} \right)}^2} - {{\left( 0 \right)}^2}} \right] \cr & W = 160{\text{in - lb}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.