Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.5 Exercises - Page 483: 5

Answer

$$W = \frac{{245}}{6}{\text{in - lb}}$$

Work Step by Step

$$\eqalign{ & {\text{From the information we have:}} \cr & F\left( x \right) = 5{\text{pounds}}{\text{ }}\left( {{\text{Variable force}}} \right) \cr & x = 3{\text{inches}}{\text{ }}\left( {{\text{Variable distance}}} \right) \cr & \cr & {\text{Using Hooke's Law to find the spring constant }}k \cr & F\left( x \right) = kx \cr & 5 = k\left( 3 \right) \cr & k = \frac{5}{3} \cr & F\left( x \right) = kx \cr & F\left( x \right) = \frac{5}{3}x \cr & \cr & {\text{The work required is }} \cr & W = \int_a^b {F\left( x \right)} dx \cr & {\text{Compressing the spring 7 inches, }}\underbrace {\left[ {0,7} \right]}_{\left[ {a,b} \right]} \cr & W = \int_0^7 {\frac{5}{3}x} dx \cr & {\text{Integrating}} \cr & W = \frac{5}{3}\left[ {\frac{1}{2}{x^2}} \right]_0^7 \cr & W = \frac{5}{3}\left[ {\frac{1}{2}{{\left( 7 \right)}^2} - \frac{1}{2}{{\left( 0 \right)}^2}} \right] \cr & W = \frac{{245}}{6}{\text{in - lb}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.