Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.5 Exercises - Page 483: 6

Answer

$$W = 87.5{\text{Joules}}$$

Work Step by Step

$$\eqalign{ & {\text{From the information we have:}} \cr & F\left( x \right) = 250{\text{N}}{\text{ }}\left( {{\text{Variable force}}} \right) \cr & x = 30{\text{cms}}{\text{ }}\left( {{\text{Variable distance}}} \right) \cr & x = 0.3{\text{m}} \cr & \cr & {\text{Using Hooke's Law to find the spring constant }}k \cr & F\left( x \right) = kx \cr & 250 = k\left( {0.3} \right) \cr & k = \frac{{250}}{{0.3}} \cr & k = \frac{{2500}}{3} \cr & F\left( x \right) = kx \cr & F\left( x \right) = \frac{{2500}}{3}x \cr & \cr & {\text{The work required is }} \cr & W = \int_a^b {F\left( x \right)} dx \cr & {\text{Stretching the spring 20cm to 50cm, }}\underbrace {\left[ {0.2{\text{m}},0.5m} \right]}_{\left[ {a,b} \right]} \cr & W = \int_{0.2}^{0.5} {\frac{{2500}}{3}x} dx \cr & {\text{Integrating}} \cr & W = \frac{{2500}}{3}\left[ {\frac{1}{2}{x^2}} \right]_{0.2}^{0.5} \cr & W = \frac{{1250}}{3}\left[ {{x^2}} \right]_{0.2}^{0.5} \cr & W = \frac{{1250}}{3}\left[ {{{\left( {0.5} \right)}^2} - {{\left( {0.2} \right)}^2}} \right] \cr & W = \frac{{175}}{2}{\text{N}} \cdot {\text{m}} \cr & W = 87.5{\text{Joules}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.