Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.4 Exercises - Page 474: 48

Answer

$$S \approx 22.943$$

Work Step by Step

$$\eqalign{ & y = \ln x,{\text{ }}1 \leqslant x \leqslant e \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\ln x} \right] \cr & \frac{{dy}}{{dx}} = \frac{1}{x} \cr & {\text{Therefore,}} \cr & S = 2\pi \int_a^b {r\left( x \right)\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} } dx,{\text{ }}r\left( x \right) = x \cr & {\text{Then,}} \cr & S = 2\pi \int_1^e {x\sqrt {1 + {{\left( {\frac{1}{x}} \right)}^2}} } dx \cr & S = 2\pi \int_1^e {\frac{x}{x}\sqrt {{x^2} + 1} } dx \cr & S = 2\pi \int_1^e {\sqrt {{x^2} + 1} } dx \cr & {\text{Integrate using a CAS or graphing utility}} \cr & S \approx 22.943 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.