Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.4 Exercises - Page 474: 47

Answer

$$S \approx 14.42359$$

Work Step by Step

$$\eqalign{ & y = \sin x,{\text{ }}0 \leqslant x \leqslant \pi \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\sin x} \right] \cr & \frac{{dy}}{{dx}} = \cos x \cr & {\text{Formula for surface area}} \cr & S = 2\pi \int_a^b {r\left( x \right)\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} } dx,{\text{ }}r\left( x \right) = f\left( x \right) \cr & {\text{Then,}} \cr & S = 2\pi \int_0^\pi {\left( {\sin x} \right)\sqrt {1 + {{\left( {\cos x} \right)}^2}} } dx \cr & S = 2\pi \int_0^\pi {\left( {\sin x} \right)\sqrt {1 + {{\cos }^2}x} } dx \cr & {\text{Integrate using a CAS or graphing utility}} \cr & S \approx 14.42359 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.