Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 7 - Applications of Integration - 7.4 Exercises - Page 474: 40

Answer

$$S = 27\sqrt {10} \pi $$

Work Step by Step

$$\eqalign{ & y = 3x,{\text{ }}0 \leqslant x \leqslant 3 \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {3x} \right] \cr & \frac{{dy}}{{dx}} = 3 \cr & {\text{Formula for surface area}} \cr & S = 2\pi \int_a^b {r\left( x \right)\sqrt {1 + {{\left[ {f'\left( x \right)} \right]}^2}} } dx,{\text{ }}r\left( x \right) = f\left( x \right) \cr & {\text{Then,}} \cr & S = 2\pi \int_0^3 {\left( {3x} \right)\sqrt {1 + {{\left( 3 \right)}^2}} } dx \cr & S = 6\sqrt {10} \pi \int_0^3 x dx \cr & {\text{Integrate}} \cr & S = 6\sqrt {10} \pi \left[ {\frac{{{x^2}}}{2}} \right]_0^3 \cr & S = 6\sqrt {10} \pi \left[ {{x^2}} \right]_0^3 \cr & S = 3\sqrt {10} \pi \left( {9 - 0} \right) \cr & S = 27\sqrt {10} \pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.