Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.6 Exercises - Page 310: 26

Answer

$a)$ = $\frac{\pi^{3}}{192}$ $b)$ = $\frac{\pi^{5}}{46080}$

Work Step by Step

$a)$ $f'(x)$ = -$sinx$ $f''(x)$ = -$cosx$ $f''(0)$ = -$cos(0)$ = -$1$ $f''(\pi)$ = -$cos(\pi)$ = $1$ $max|f''(x)|$ = $1$ $\frac{(b-a)^{3}}{12n^{2}}$$max|f''(x)|$ = $\frac{(\pi)^{3}(1)}{12(4)^{2}}$ = $\frac{\pi^{3}}{192}$ $b)$ $f^{3}(x)$ = $sinx$ $f^{4}(x)$ = $cosx$ $f^{4}(0)$ = $cos(0)$ = $1$ $f^{4}(\pi)$ = $cos(\pi)$ = -$1$ $max|f^{4}(x)|$ = $1$ $\frac{(b-a)^{5}}{180n^{4}}$$max|f^{4}(x)|$ = $\frac{(\pi)^{5}(1)}{180(4)^{4}(1)}$ = $\frac{\pi^{5}}{46080}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.