Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.6 Exercises - Page 310: 14

Answer

$$\eqalign{ & {\text{Trapezoidal Rule}} \approx 1.4298 \cr & {\text{Simpson's Rule}} \approx 1.4582 \cr & {\text{Graphing utility}} \approx 1.4578 \cr} $$

Work Step by Step

$$\eqalign{ & \int_{\pi /2}^\pi {\sqrt x \sin x} dx \cr & {\text{*Using the trapezoidal Rule }}\left( {{\text{THEOREM 4}}{\text{.17}}} \right) \cr & \int_a^b {f\left( x \right)} dx \approx \frac{{b - a}}{{2n}}\left[ {f\left( {{x_0}} \right) + 2f\left( {{x_1}} \right) + \cdots 2f\left( {{x_{n - 1}}} \right) + f\left( {{x_n}} \right)} \right] \cr & {\text{For }}n = 4,{\text{ }}\Delta x = \frac{{b - a}}{n} = \frac{{\pi - \pi /2}}{4} = \frac{\pi }{8},{\text{ then,}} \cr & \cr & {x_0} = \frac{\pi }{2},{\text{ }}{x_1} = \frac{5}{8}\pi ,{\text{ }}{x_2}{\text{ = }}\frac{3}{4}\pi {\text{, }}{x_3} = \frac{7}{8}\pi ,{\text{ }}{x_4} = \pi \cr & f\left( {{x_0}} \right) = f\left( {\frac{\pi }{2}} \right) = \sqrt {\frac{\pi }{2}} \sin \left( {\frac{\pi }{2}} \right) = \sqrt {\frac{\pi }{2}} \cr & f\left( {{x_1}} \right) = f\left( {\frac{5}{8}\pi } \right) = \sqrt {\frac{5}{8}\pi } \sin \left( {\frac{5}{8}\pi } \right) \cr & f\left( {{x_2}} \right) = f\left( {\frac{3}{4}\pi } \right) = \sqrt {\frac{3}{4}\pi } \sin \left( {\frac{3}{4}\pi } \right) = \frac{{\sqrt {6\pi } }}{4} \cr & f\left( {{x_3}} \right) = f\left( {\frac{7}{8}\pi } \right) = \sqrt {\frac{7}{8}\pi } \sin \left( {\frac{\pi }{2}} \right) \cr & f\left( {{x_4}} \right) = f\left( \pi \right) = \sqrt \pi \sin \left( \pi \right) = 0 \cr & \cr & \int_{\pi /2}^\pi {\sqrt x \sin x} dx \approx \frac{\pi }{{16}}\left[ {\sqrt {\frac{\pi }{2}} + 2\sqrt {\frac{5}{8}\pi } \sin \left( {\frac{5}{8}\pi } \right) + 2\left( {\frac{{\sqrt {6\pi } }}{4}} \right)} \right] \cr & + \frac{\pi }{{16}}\left[ {2\sqrt {\frac{7}{8}\pi } \sin \left( {\frac{{7\pi }}{8}} \right) + 0} \right] \cr & {\text{Simplifying by using a calculator}} \cr & \int_{\pi /2}^\pi {\sqrt x \sin x} dx \approx 1.42986 \cr & \cr & {\text{*Using the Simpson's Rule }}\left( {{\text{THEOREM 4}}{\text{.19}}} \right) \cr & \int_a^b {f\left( x \right)} dx \approx \frac{{b - a}}{{3n}}\left[ {f\left( {{x_0}} \right) + 4f\left( {{x_1}} \right) + 2f\left( {{x_2}} \right) + 4f\left( {{x_3}} \right) + \cdots } \right. \cr & \left. { + 4f\left( {{x_{n - 1}}} \right) + f\left( {{x_n}} \right)} \right] \cr & \int_{\pi /2}^\pi {\sqrt x \sin x} dx \approx \frac{\pi }{{24}}\left[ {\sqrt {\frac{\pi }{2}} + 4\sqrt {\frac{5}{8}\pi } \sin \left( {\frac{5}{8}\pi } \right) + 2\left( {\frac{{\sqrt {6\pi } }}{4}} \right)} \right] \cr & {\text{ }} + \frac{\pi }{{24}}\left[ {4\sqrt {\frac{7}{8}\pi } \sin \left( {\frac{{7\pi }}{8}} \right) + 0} \right] \cr & {\text{Simplifying by using a calculator}} \cr & \int_{\pi /2}^\pi {\sqrt x \sin x} dx \approx 1.4582 \cr & \cr & {\text{Using a graphing utility we obtain}} \cr & \int_{\pi /2}^\pi {\sqrt x \sin x} dx \approx 1.4578 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.