Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.6 Exercises - Page 310: 1

Answer

$Trapezoidal Rule$ = $2.7500$ $Simpson’s Rule$ = $2.6667$ $Exact$ = $2.6667$

Work Step by Step

$Trapezoidal Rule$ $\int _{0}^{2}x^{2}$ $dx$ = $\frac{2}{8}$ $[f(x_{0})+2f(x_{1})+2f(x_{2})+2f(x_{3})+f(x_{4})]$ $\frac{2}{8}$$[0+2(\frac{1}{4})+2(1)+2(\frac{9}{4})+4]$ = $\frac{1}{4}$$[0+\frac{1}{2}+2+\frac{9}{2}+4]$ = $\frac{11}{4}$ = $2.7500$ $Simpson’s Rule$ $\int _{0}^{2}x^{2}$ $dx$ = $\frac{2}{12}$ $[f(x_{0})+4f(x_{1})+2f(x_{2})+4f(x_{3})+f(x_{4})]$ = $\frac{2}{12}$$[0+4(\frac{1}{4})+2(1)+4(\frac{9}{4})+4]$ = $\frac{8}{3}$ = $2.6667$ $Exact$ $\int _{0}^{2}x^{2}$ $dx$ = $\frac{(2)^{3}}{3}$ - $0$ = $\frac{8}{3}$ = $2.6667$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.