Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.1 Exercises - Page 252: 46

Answer

$$y = \frac{{4{x^{3/2}}}}{3} + \frac{4}{3}$$

Work Step by Step

$$\eqalign{ & \left( {\text{b}} \right) \cr & \frac{{dy}}{{dx}} = 2\sqrt x ,{\text{ }}\left( {4,12} \right) \cr & {\text{Separate the variables}} \cr & dy = 2\sqrt x dx \cr & {\text{Integrate}} \cr & \int {dy} = \int {2{x^{1/2}}} dx \cr & y = 2\left( {\frac{{{x^{3/2}}}}{{3/2}}} \right) + C \cr & y = \frac{{4{x^{3/2}}}}{3} + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {4,12} \right){\text{ to find the particular solution}} \cr & 12 = \frac{{4{{\left( 4 \right)}^{3/2}}}}{3} + C \cr & C = \frac{4}{3} \cr & {\text{Substituting }}C{\text{ into }}\left( {\bf{1}} \right) \cr & y = \frac{{4{x^{3/2}}}}{3} + \frac{4}{3} \cr & \cr & \left( {\text{a}} \right){\text{Slope field for the differential equation}} \cr & \left( {\text{c}} \right){\text{Graph the solution}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.