Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 204: 89

Answer

$$\eqalign{ & \left( {\text{a}} \right){\text{Graph}} \cr & \left( {\text{b}} \right)Yes,{\text{ the speed limit is 100}} \cr} $$

Work Step by Step

\[\begin{gathered} {\text{We have the following table:}} \hfill \\ \boxed{\begin{array}{*{20}{c}} t&5&{10}&{15}&{20}&{25}&{30} \\ S&{28}&{56}&{79}&{90}&{93}&{94} \end{array}} \hfill \\ \end{gathered} \] $$\eqalign{ & {\text{The model data for }}S{\text{ is given by }}S = \frac{{100{t^2}}}{{65 + {t^2}}},{\text{ }}t > 0 \cr & \cr & \left( {\text{a}} \right){\text{Using a graphing utility to plot }}S = \frac{{100{t^2}}}{{65 + {t^2}}} \cr & \left( {{\text{See graph below}}} \right) \cr & \cr & \left( {\text{b}} \right){\text{We can notice on the table that when }}t{\text{ increases }}S \cr & {\text{also increases, but slower}}{\text{. We can calculate the exact}} \cr & {\text{value evaluating the limit when }}t \to \infty \cr & \mathop {\lim }\limits_{t \to \infty } S = \mathop {\lim }\limits_{t \to \infty } \frac{{100{t^2}}}{{65 + {t^2}}} \cr & = \mathop {\lim }\limits_{t \to \infty } \frac{{\frac{{100{t^2}}}{{{t^2}}}}}{{\frac{{65}}{{{t^2}}} + \frac{{{t^2}}}{{{t^2}}}}} = \mathop {\lim }\limits_{t \to \infty } \frac{{100}}{{\frac{{65}}{{{t^2}}} + 1}} \cr & {\text{Evaluating the limit}} \cr & \mathop {\lim }\limits_{t \to \infty } \frac{{100}}{{\frac{{65}}{{{t^2}}} + 1}} = \frac{{100}}{{\frac{{65}}{\infty } + 1}} = \frac{{100}}{{0 + 1}} = 100 \cr & {\text{The speed limit is 100}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.