Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises - Page 204: 85

Answer

$${\text{100% }}$$

Work Step by Step

$$\eqalign{ & {\text{Efficiency }}\left( \% \right) = 100\left[ {1 - \frac{1}{{{{\left( {{v_1}/{v_2}} \right)}^c}}}} \right] \cr & {\text{Where }}\frac{{{v_1}}}{{{v_2}}}{\text{ is the ratio of the uncompressed gas, and }}c > 0 \cr & {\text{Let }}r = \frac{{{v_1}}}{{{v_2}}} \cr & {\text{Efficiency }}\left( \% \right) = 100\left[ {1 - \frac{1}{{{r^c}}}} \right] \cr & {\text{The limit of the efficiency as the compression ratio }} \cr & {\text{approaches infnity is:}} \cr & {\text{Efficiency }}\left( \% \right) = \mathop {\lim }\limits_{r \to \infty } 100\left[ {1 - \frac{1}{{{r^c}}}} \right] \cr & = 100\mathop {\lim }\limits_{r \to \infty } \left[ {1 - \frac{1}{{{r^c}}}} \right] \cr & = 100\left( {1 - \frac{1}{{{\infty ^c}}}} \right),{\text{ }}c > 0 \cr & = 100\left( {1 - \frac{1}{0}} \right) \cr & = 100 \cr & {\text{Then the efficiency is 100% }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.