Answer
$$\eqalign{
& {\text{Vertical asymptotes: none}} \cr
& {\text{Horizontal asymptotes at }}y = \sin \left( 1 \right) \cr
& {\text{Relative maximum at }}\left( {\frac{{2\pi }}{{\pi - 2}},1} \right) \cr
& {\text{Domain}}:\left( {3,\infty } \right) \cr} $$
Work Step by Step
$$\eqalign{
& g\left( x \right) = \sin \left( {\frac{x}{{x - 2}}} \right),{\text{ }}x > 3 \cr
& {\text{The domain is }}D:\left( {3,\infty } \right) \cr
& {\text{*Differentiating}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {\sin \left( {\frac{x}{{x - 2}}} \right)} \right] \cr
& f'\left( x \right) = \cos \left( {\frac{x}{{x - 2}}} \right)\frac{d}{{dx}}\left[ {\frac{x}{{x - 2}}} \right] \cr
& f'\left( x \right) = \cos \left( {\frac{x}{{x - 2}}} \right)\left( {\frac{{x - 2 - x}}{{{{\left( {x - 2} \right)}^2}}}} \right) \cr
& f'\left( x \right) = - \frac{2}{{{{\left( {x - 2} \right)}^2}}}\cos \left( {\frac{x}{{x - 2}}} \right),{\text{ }}x > 3 \cr
& {\text{Set }}f'\left( x \right) = 0 \cr
& - \frac{2}{{{{\left( {x - 2} \right)}^2}}}\cos \left( {\frac{x}{{x - 2}}} \right) = 0 \cr
& \frac{x}{{x - 2}} = \frac{\pi }{2} \cr
& {\text{Solving we obtain}} \cr
& x = \frac{{2\pi }}{{\pi - 2}},{\text{ then by the first derivative test}}{\text{.}} \cr
& {\text{ On the interval }}\left( {3,\frac{{2\pi }}{{\pi - 2}}} \right),{\text{ }}f'\left( x \right) > 0,{\text{ Increasing}} \cr
& {\text{ On the interval }}\left( {\frac{{2\pi }}{{\pi - 2}},\infty } \right),{\text{ }}f'\left( x \right) < 0,{\text{ Decreasing}} \cr
& {\text{There is a relative maximum at }}x = \frac{{2\pi }}{{\pi - 2}} \cr
& g\left( {\frac{{2\pi }}{{\pi - 2}}} \right) = \sin \left( {\frac{{\frac{{2\pi }}{{\pi - 2}}}}{{\frac{{2\pi }}{{\pi - 2}} - 2}}} \right) = 1 \cr
& {\text{Relative maximum at }}\left( {\frac{{2\pi }}{{\pi - 2}},1} \right) \cr
& \cr
& {\text{*There are no vertical asymptotes because the denominator}} \cr
& {\text{is never 0}}{\text{.}} \cr
& *{\text{Find the horizontal asymptotes}} \cr
& \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \sin \left( {\frac{x}{{x - 2}}} \right) = \sin \left( 1 \right) \cr
& {\text{Horizontal asymptotes at }}y = \sin \left( 1 \right) \cr
& \cr
& {\text{Summary}} \cr
& {\text{Vertical asymptotes: none}} \cr
& {\text{Horizontal asymptotes at }}y = \sin \left( 1 \right) \cr
& {\text{Relative maximum at }}\left( {\frac{{2\pi }}{{\pi - 2}},1} \right) \cr
& {\text{Domain}}:\left( {3,\infty } \right) \cr
& \cr
& {\text{Graph}} \cr} $$