Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.1 Exercises - Page 167: 40

Answer

$ a.\quad$Minima at $(-2,0)$ and $(2,0)$. Maximum at $(0,2).$ $ b.\quad$Minimum at $(-2,0)$. Maximum at $(0,2).$ $ c.\quad$Maximum at $(0,2).$ $ d.\quad$Maximum at $(1,\sqrt{3}).$

Work Step by Step

$f(x)=(4-x^{2})^{1/2}$ $ f'(x)=(4-x^{2})^{-1/2}\cdot(-2x)\qquad$ ... chain rule $=\displaystyle \frac{-2x}{\sqrt{4-x^{2}}}$ Critical point: $x=0$ $a.\quad \left[\begin{array}{lll} \text{left endp.} & \text{critical p.} & \text{right endp.}\\ x=-2 & x=0 & x=2\\ f(-2)=0 & 2 & 0\\ \text{abs. min} & \text{abs. max} & \text{abs. min} \end{array}\right]$ $b.\quad \left[\begin{array}{lll} \text{left endp.} & \text{critical p.} & \text{right endp.}\\ x=-2 & x=0 & \text{- none -}\\ f(-2)=0 & 2 & \\ \text{abs. min} & \text{abs. max} & \end{array}\right]$ $c.\quad \left[\begin{array}{lll} \text{left endp.} & \text{critical p.} & \text{right endp.}\\ \text{- none -} & x=0 & \text{- none -}\\ & 2 & \\ & \text{abs. max} & \end{array}\right]$ $d.\quad \left[\begin{array}{lll} \text{left endp.} & \text{critical p.} & \text{right endp.}\\ x=1 & \text{- none -} & \text{- none -}\\ f(1)=\sqrt{3} & & \\ & & \end{array}\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.