Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.2 The Indefinite Integral - Exercises Set 4.2 - Page 280: 67

Answer

$v=\frac{1087}{\sqrt{273}} T^{\frac{1}{2}} f t / s$

Work Step by Step

\[ \frac{d v}{d T}=\frac{1087}{2 \sqrt{273}} T^{\frac{1}{2}} \Rightarrow d v=\frac{1087}{2 \sqrt{273}} T^{-\frac{1}{2}} d T \] We get: \[ \begin{array}{c} \int d v=\int \frac{1087}{2 \sqrt{273}} T^{-\frac{1}{2}} d T \\ v=\frac{1087}{\sqrt{273}} T^{\frac{1}{2}}+C \end{array} \] The speed of sound in air at $0 \mathrm{C}$ (or $273 \mathrm{K}$ on the Kelvin scale) is $1087 \mathrm{ft} / \mathrm{s}$: $\frac{1087}{\sqrt{273}} T^{\frac{1}{2}}+C=v\Rightarrow \frac{1087}{\sqrt{273}}(273)^{\frac{1}{2}}+C=1087$ $1087=1087+C$ $\therefore C=0$ $v=\frac{1087}{\sqrt{273}} T^{\frac{1}{2}} f t / s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.