Answer
\begin{array}{l}
\frac{7+x^{3}}{3}=C
\end{array}
Work Step by Step
\[
x^{2}=f^{\prime}(x)
\]
Integrate to get $f(x)$
\[
\begin{array}{l}
\int x^{2} d x =f(x)\\
C+\frac{1}{3} x^{3}=f(x)
\end{array}
\]
Given that the curve passes through (-1,2)
Substitute $f(x)=-1, x=2$ and solve for $C$
\[
\begin{array}{c}
\frac{1}{3}(-1)^{3}+C=2 \\
-\frac{1}{3}+C=2 \\
\frac{1}{3}+2=C\\
\frac{7}{3}=C
\end{array}
\]