Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.6 Planes in 3-Space - Exercises Set 11.6 - Page 820: 37

Answer

$7x+y+9z=25$

Work Step by Step

$x=-2+t$ $y=3+2t$ $z=4-t$ Vector parallel to line is $<1,2,-1>$ $t=0$ implies $(-2,3,4)$ lies on the line. (Point P) $t=1$ implies $(-1,5,3)$ lies on the line. (Point Q) $x=3-t$ $y=4-2t$ $z=t$ Vector parallel to line is $<-1,-2,1>$ $t=0$ implies $(3,4,0)$ lies on the line. (Point R) $<1,2,-1>=(-1)<-1,-2,1>$ Thus the lines are parallel. $\vec{PQ}=<-1,5,3>-<-2,3,4,>=<1,2,-1>$ $\vec{PR}=<3,4,0>-<-2,3,4>=<5,1,-4>$ $\vec{PQ}\times\vec{PR}=<-7,-1,-9>$ is the normal to the plane. Point P lies on the plane. Thus the equation of the plane is: $[-<-2,3,4>]\cdot<-7,-1,-9>=0$ $\Longrightarrow \cdot<-7,-1,-9>=0$ $\Longrightarrow -7(x+2)-(y-3)-9(z-4)=0$ $\Longrightarrow 7(x+2)+(y-3)+9(z-4)=0$ $7x+y+9z=25$ is the equation of the plane.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.