Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.6 Planes in 3-Space - Exercises Set 11.6 - Page 820: 31

Answer

$x+5y+3z = -6$

Work Step by Step

Given planes: \begin{align*} 2x-y+z &= 1 \\ x+y-2z &= 3 \end{align*} Normal vectors to the given planes: \begin{align*} \mathbf{u} &= \langle 2, -1, 1 \rangle \\ \mathbf{v} &= \langle 1, 1, -2 \rangle \end{align*} Equation of the plane parallel to the line of intersection between the given planes: \begin{align*} &a(x+1) + b(y-2) + c(z+5) = 0 \\ \mathbf{n} &= \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 1 \\ 1 & 1 & -2 \end{vmatrix} = \langle 1, 5, 3 \rangle \\ a &= 1, \quad b = 5, \quad c = 3 \\ &\therefore x+5y+3z = -6 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.