Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 11 - Three-Dimensional Space; Vectors - 11.6 Planes in 3-Space - Exercises Set 11.6 - Page 820: 27

Answer

\[ 14=-4 x+13 y-21 z \]

Work Step by Step

From the equations of the given planes, we get that \[ \begin{aligned} y &=-2 x+2 z+3=4 x+z-2 \\ \Rightarrow z &=2 x+4 x-3-2=-5+6 x \end{aligned} \] So, for $t=x$ we get that \[ t=x, 6 t+4 t-2-5=y, -5+6 t=z \] \[ \Rightarrow t=x, \quad -5+6 t=z , \quad -7+10 t=y \] Since the plane $d=a x+b y+c z$ contains the line, the normal vector to the plane $\vec{n}=\langle a, b, c\rangle$ is orthogonal to $\vec{v}=\langle 1,10,6\rangle$ (parallel line vector ). And then \[ \begin{aligned} 0=\vec{n} \cdot \vec{v} & \Rightarrow 0=\langle a, b, c\rangle\langle 1,10,6\rangle \\ & \Rightarrow 0=a+10 b+6 c \\ & \Rightarrow -a=10 b+6 c \end{aligned} \] For $0=t$, we get that \[ -5=z, \quad -7=y \quad, \quad x=0 \] So the plane and the line contains the point $Q(0,-7,-5) .$ This implies that \[ \begin{aligned} d=a(0)+b(-7)+c(-5) & \\ \Rightarrow d=\quad-7 b-5 c \end{aligned} \] Since the plane passes through $(-1,4,2)P$, we get that \[ d=-a+4 b+2 c \] We have found the following system of linear equations \[ \begin{array}{l} -6 c-10 b=a \\ 2 c-d+4 b=a \\ -5 c-7 b=d \end{array} \] The solution to the linear equations is: \[ \frac{13 d}{14}=b, -\frac{3 d}{2}=c, \quad -\frac{2 d}{7}=a \] So the equation of the plane is \[ \begin{array}{l} d=\frac{13 d}{14} y-\frac{3 d}{2} z -2 \frac{d}{7} x\\ \Rightarrow14=13 y-21 z-4 x \end{array} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.