Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 207: 84

Answer

$$e^{-x}(x-1000)$$

Work Step by Step

$f(x)=xe^{-x}$ Let $y=f(x)$, then $y=xe^{-x}$ $\frac{dy}{dx}=-xe^{-x}+e^{-x}\Longrightarrow -e^{-x}(x-1) \\ \frac{d^2y}{dx^2}=xe^{-x}-2e^{-x}\Longrightarrow e^{-x}(x-2)\\ \frac{d^3y}{dx^3}=-xe^{-x}+3e^{-x}\Longrightarrow -e^{-x}(x-3)\\ \frac{d^4y}{dx^4}=xe^{-x}-4e^{-x}\Longrightarrow e^{-x}(x-4)\\ $ $\vdots\\ \vdots$ $\frac{d^{1000}y}{dx^{1000}}=e^{-x}(x-1000)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.