Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.4 - The Chain Rule - 3.4 Exercises - Page 207: 81

Answer

See below.

Work Step by Step

To make life easier for us, let's start with some substitution. $a=Acos(3x)$ $b=Bsin(3x)$ We are given: $y=e^{2x}(Acos(3x)+Bsin(3x))$ Using our substitution: $y=e^{2x}(a+b)$ Now, we take the first derivative using the product rule ($(f(x)g(x))'=f'(x)g(x)+g'(x)f(x)$): $y'=2e^{2x}(a+b)+e^{2x}(a'+b')$ $y'=e^{2x}(2a+2b+a'+b')$ Then, the second derivative: $y''=2e^{2x}(2a+2b+a'+b')+e^{2x}(2a'+2b'+a''+b'')$ $y''=e^{2x}(4a+4b+2a'+2b'+2a'+2b'+a''+b'')$ $y''=e^{2x}(4a+4b+4a'+4b'+a''+b'')$ We are asked to show that the original function satisfies the equation $y''-4y'+13y=0$. We will substitute the equations we found into this equation. $e^{2x}(4a+4b+4a'+4b'+a''+b'')-4(e^{2x}(2a+2b+a'+b'))+13(e^{2x}(a+b))$ $=e^{2x}(4a+4b+4a'+4b'+a''+b''-8a-8b-4a'-4b'+13a+13b)$ $=e^{2x}(9a+9b+a''+b'')$ We'll now solve for $a''$ and $b''$. $a=Acos(3x)$ $a'=-3Asin(3x)$ $a'' = -9Acos(3x)$ $b=Bsin(3x)$ $b'=3Bscos3x)$ $b''=-9Bsin(3x)$ Finally, we'll substitute $a$, $b$, $a''$, and $b''$ back into $e^{2x}(9a+9b+a''+b'')$ $=e^{2x}(9a+9b+a''+b'')$ $=e^{2x}(9Acos(3x)+9Bsin(3x)-9Acos(3x)-9Bsin(3x))$ $=0$ Done!
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.